Q learning

CS 224R



Reminders

Today: Project survey due

Wednesday: Homework 1 due, Homework 2 out



The Plan

Advanced policy gradients recap
Actor-critic & case studies
Policy iteration and value iteration

Q learning

Key learning goals:
 Understand the difference between policy & value iteration

* [ntuition of Q learning



The Plan

Advanced policy gradients recap
Actor-critic & case studies
Policy iteration and value iteration

Q learning



Policy gradients
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good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!
REINFORCE algorithm:
> 1. sample {7} from 7y (a;|s¢) (run it on the robot)
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2. VoJ(0) = >_. (Zt Vg logﬂ-@(at‘st)) (Ztr(si,a;‘;))
3. 00+ aVyJ(6)




Variance of the gradient estimator
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Objective distribution
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Americans

This is awesome!

It's a good start

Eastern Europeans stuff

What is this garbage? | don’t like it



Small way to reduce variance
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policy gradient: VQ J(Q) ~ N (Z VQ log (y: az 1 |S7J ¢ ) (Z r\Sq.t, Adq t )
' t=1

\ }
|

Reward “to go”




Improving the policy gradient
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Reward “to go”
oy

(); +: estimate of expected reward if we take action a; ; in state s;

can we get a better estimate?

Q(st,ar) = ZtT,:t E., |[r(sy,ap)|st, at]: true expected reward-to-go

N

T
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Slide adapted from Sergey Levine



State & state-action value functions

Q™ (s¢,a4) = Zz::t E., |[r(sy,ap)|st, a]: total reward from taking a; in s;
VT(st) = Ea,romg(ay]s,) (@™ (S¢,a¢)]: total reward from s;

A™(s¢,a:) = Q7 (s¢,a:) — V™ (s¢): how much better a; is

Slide adapted from Sergey Levine



Value function: V™ (s;) =7

Va‘ue_Based RI_ Q function: Qn(stiat) — 7

Advantage function: A™(s;,a;) =7 Reward = 1if | can play it
in @ month, O otherwise

IMPROVISATION TEST EXAMPLES AND IDEAS FOR ROCKSCHOOL GRADE 1DRUMS EXAM
J = titten by Theo Lawrence / TL Music Lessons
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How can we use all of this to fit a better estimator?
Goal: fit V7™

ideal target: vy; s = >, _; Er, [7(St,ae)[8i¢] =~ 7(sit, i) + V7 (si001) = 7(Sig,a54) + Vi(sit+1)

T . . .
Monte Carlo target: y;: = > /., 7(Siv, ;) directly use previous fitted value function!

A

V7 (s)
parameters ¢

supervised regression: L£(¢) =

DO | =
<>
e
N
w0
~
N—""
|
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~
)

sometimes referred to as a “bootstrapped” estimate

Slide adapted from Sergey Levine



Problem with importance sampling in (policy gradient)

VQ/J(QI) _ E’TNT('Q(T) (HtTl 779’(3-7&575)) (Z VQI log ng(atst)) (Z T(St, at))

I thl To(a¢|St) t=1

Importance sampling

|'p ()q”f( )dz = [ q(=)

0" < argmax(0’ — 0)VyJ(0) s.t.Drr(me,mg) < e



Proximal policy optimization (PPO)

Apply all the tricks:

 Use advantage function to reduce the variance
 Use importance sampling to take multiple gradient steps
* Constrain the optimization objective in the policy space

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl

{joschu, filip, prafulla, alec, oleg}@openai.com

Let r,(0) denote the probability ratio r;(f) = w;TH(CE: Tte)t)’ so0 7(0pq) = 1. TRPO maximizes a
old ’

“surrogate” objective

LCPI(H) _ Et[ mg(at | st) At] _ I"Et [’f‘t(g)fit]- (6)

TOo1a (a¢ | st)

The superscript C'PI refers to conservative policy iteration [KLO02|, where this objective was pro-
posed. Without a constraint, maximization of L¢*! would lead to an excessively large policy
update; hence, we now consider how to modify the objective, to penalize changes to the policy that
move 7¢(0) away from 1.

The main objective we propose is the following:

LOHIP (9) = B, [min(ry(9) Ay, clip(ry(6), 1 — &, 1+ ) A) (7)



The Plan

Advanced policy gradients recap
Actor-critic & case studies
Policy iteration and value iteration

Q learning



REINFORCE algorithm:
> 1. sample {7'} from mg(a;|s;) (run the policy)

2. Vo J(0) = 3, (3o, Vo logme(ajlsy)) (30, (s}, ap)) fit a model to
e 30— 0+ aVyJ(H) estimate return

online actor-critic algorithm:

1. take action a ~ mg(als), get (s,a,s’, r) generate samp.les
(i.e. run the policy)

2. update qu using target r + ’qu;T(s’)
3. evaluate A" (s,a) =r(s,a) + YV (s') — V(s

4. Vg J(0) ~ Vg logmg(als)A™ (s, a)
\i 5. 0« 0+ aVeJ(0) improve the policy

Can we make it more off-policy friendly?

Slide adapted from Sergey Levine



Case study: PPO applied to robotics

Rubber Glove



Case study: PPO applied to robotics

Solving the Rubik’s Cube with a robot hand is still not easy. Our method currently solves the Rubik’s

We train neural networks to solve the Rubik’s Cube in simulation using reinforcement

learning and Kociemba’s algorithm for picking the solution steps.A Domain randomization enables

networks trained solely in simulation to transfer to a real robot.

into the hand and continue solving.

Simulator physics. We randomize simulator physics parameters such as geometry, friction, gravity, etc. See Sec-
tion B.1 for details of their ADR parameterization.

Custom physics. We model additional physical robot effects that are not modelled by the simulator, for example,
action latency or motor backlash. See [77, Appendix C.2] for implementation details of these models. We randomize
the parameters in these models in a similar way to simulator physics randomizations.

Adversarial. We use an adversarial approach similar to [82, 83] to capture any remaining unmodeled physical effects
in the target domain. However, we use random networks instead of a trained adversary. See Section B.3 for details on
implementation and ADR parameterization.

Observation. We add Gaussian noise to policy observations to better approximate observation conditions in reality.
We apply both correlated noise, which is sampled once at the start of an episode and uncorrelated noise, which is
sampled at each time step. We randomize the parameters of the added noise. See Section B.4 for details of their ADR
parameterization.

Vision. We randomize several aspects in ORRB [16] to control the rendered scene, including lighting conditions,
camera positions and angles, materials and appearances of all the objects, the texture of the background, and the
post-processing effects on the rendered images. See Section B.5 for details.



Case study: PPO applied to robotics

i

ADR applied to the size of the Rubik’s Cube

Days of Training Time



Case study: PPO applied to robotics

Table 6: Performance of different policies on the Rubik’s cube for a fixed fair scramble goal sequence. We evaluate each
policy on the real robot (N=10 trials) and report the mean + standard error and median number of successes (meaning
the total number of successful rotations and flips). We also report two success rates for applying half of a fair scramble
(“half™) and the other one for fully applying it (*full”). For ADR policies, we report the entropy in nats per dimension
(npd). For “Manual DR”, we obtain an upper bound on its ADR entropy by running ADR with the policy fixed and
report the entropy once the distribution stops changing (marked with an “*”).

Policy Sensing ADR Entropy Successes (Real) Success Rate
Pose Face Angles Mean Median  Half Full
Manual DR Vision Giiker —0.569" npd 1.8+04 2.0 0 % 0 %
ADR Vision  Giiker —0.084 npd 3.8+ 1.0 3.0 0 % 0 %
ADR (XL) Vision  Giiker 0.467npd | 17.8 £4.2 125 30% 10 %
ADR (XXL) Vision Giiker 0.479npd | 26.8+4.9 220 60% 20 %
ADR (XXL) Vision Vision 0.479npd | 12.8+ 34 10.56 20 % 0 %

Train in Simulation

A We use Automatic Domain Randomization (ADR) B We train a control policy using reinforcement learning
to collect simulated training data on an ever-growing It chooses the next action based on fingertip positions
distribution of randomized environments and the cube state

_

Observations Actions

C We train a convolutional neural network to predict the
cube state given three simulated camera images

“\Q 4

Cube Pose

e

Face Angles

Transfer to the Real World

D We combine the state estimation network
and the control policy to transfer to the real world

’
B ;
N, _ ‘
B Fingertip M { ‘. 3 J
c " Locations 'ﬂg:”
A - Actions
- 3 Cube Pose
N

Giker Cube

Figure 2: System Overview. (a) We use automatic domain randomization (ADR) to generate a growing distribution of
simulations with randomized parameters and appearances. We use this data for both the control policy and vision-based
state estimator. (b) The control policy receives observed robot states and rewards from the randomized simulations and
learns to solve them using a recurrent neural network and reinforcement learning. (c) The vision-based state estimator
uses rendered scenes collected from the randomized simulations and learns to predict the pose as well as face angles
of the Rubik’s cube using a convolutional neural network (CNN), trained separately from the control policy. (d) To
transfer to the real world, we predict the Rubik’s cube’s pose from 3 real camera feeds with the CNN and measure
the robot fingertip locations using a 3D motion capture system. The face angles that describe the internal rotational
state of the Rubik’s cube are provided by either the same vision state estimator or the Giiker cube, a custom cube with
embedded sensors and feed it into the policy network.



Case study: PPO applied to LLMs (speculations)

RL from human feedback (RLHF)
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Reward model

* |ma:

oine a reward function: R(s;p) € R for any output s to prompt p

* The reward is higher when humans prefer the output

SAN FRANCISCO,
California (CNN) --
A magnitude 4.2
earthquake shook the
San Francisco

overturn unstable
objects.

The Bay Area has
good weather but 1is
prone to
earthquakes and

An earthquake hit
San Francisco.

There was minor

property damage,

but no injuries. wildfires.
Sl SZ
R(s{;p) = 0.8 R(s,;p) = 1.2

[Slide credit: Jesse Mul]



Regularizing pre-trained model

* Challenge: how do we ensure that R(s; p) prefer natural language generations?

* Since R(S; p) s trained on natural language inputs, it might fail to assign low scores to

unnatural S.

* Solution: add regularization term to R(s; p) that penalizes outputs that deviate from

natural language.

-

p* (S))

R\(S; P) = R(S; p) IR ﬁlOg (pPT(S)

pay a price when

~

ﬂ p"(s) <pPT(s)
Y

* This is a penalty which prevents us from diverging too far from the pretrained model.



RLHF + PPO (speculations)

Step 1

Collect demonstration data,
and train a supervised policy.

30k tasks!

A promptis
sampled from our
prompt dataset.

Explain the moon
landing to a 6 year old

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

|
Y

V4

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

A o

Explain gravity... Explain war...

© (D

Moon is natural People went to
satellite of... the moon...

| J

\

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs



Case study: PPO applied to LLMs (speculations)

® |S HF Mmore |mporta ﬂt thaﬂ Rl_? PROMPT  Write a short poem about a wise frog.
 What would you try next?

 What do you think the
Write a short story in which you try to get something back that you
challenges are? have lost,

Write a short story in which a character has a bad dream.

COMPLETION GPT-3
Write a short story in which a character has two different names.

InstructGPT

The frog is a symbol of wisdom

He knows all the secrets of the world
He 1s a master of disguise

And a great teacher of life

He 1s a symbol of transformation

And the bringer of change

He 1s the frog who has seen it all
And knows the meaning of it all



The Plan

Advanced policy gradients recap
Actor-critic & case studies
Policy iteration and value iteration

Q learning



This was just the prediction part...



The anatomy of a reinforcement learning algorithm

compute Q = 3,,_, 7" ~tr, (MC policy gradient)

fit a model to

estimate return fit Q4(s,a) (actor-critic, Q-learning)

estimate p(s’[s,a) (model-based)

generate samples
(i.e. run the policy)

0 < 0+ aVyeJ(0) (policy gradient)
improve the policy m(s) = argmax (Q4(s,a) (Q-learning)
optimize mg(als) (model-based)



0 < 0+ aVyJ(0) (policy gradient)

N T
VQJ(H)mJbE;;V(glogm azt\szt (;fr‘ a; ¢, S ¢ )
Q" (a,s) —V"(s)= A" (s, a) Z

VoJ(0) = Vg log g (a\S)A"T(S, a)

Improving the Policy

how good is an action

compared to the policy? fit V" (s¢)

fit a model to
estimate return

generate samples

(i.e. run the policy)

‘; improve the policy
T +— 7'




Value function: V™ (s;) =7

Va‘ue_Based RI_ Q function: Qn(stiat) — 7

Advantage function: A™(s;,a;) =7 Reward = 1if | can play it
in @ month, O otherwise

IMPROVISATION TEST EXAMPLES AND IDEAS FOR ROCKSCHOOL GRADE 1DRUMS EXAM
J = titten by Theo Lawrence / TL Music Lessons

|l“|_fﬁmﬁﬁch|ﬂﬂﬂﬂ|ﬂﬂﬂﬂ| —
Tt T T T ot e

OO0R AA0A 0000 sses. 5R
Ll oyl )
EE== === STTESIPE

How can we improve the
@
Y
_

policy?
®

=4

Current(a,|s) =1




Improving the Policy

A7 (s¢,a4): how much better is a; than the average action according to at least as good as any a; ~ mw(a|s;)

arg max,, A™(s¢, a;): best action from sy, if we then follow 7 regardless of what m(a;|s;) is!

(

1 if Ay — al'gInaXy, AW(St, at)

/ _
m(alse) = <\ 0 otherwise

fit V" (St)

fit a model to
estimate return

generate samples
(i.e. run the policy)

improve the policy

Slide adapted from Sergey Levine



Policy Iteration

fit Vﬂ- (St)

fit a model to
estimate return

policy iteration algorithm:

E 1. evaluate A™ (s, a)
2. set ™+ 7’

generate samples
1 if a; = argmax,, A™ (St, at) (i.e. run the policy)

0 otherwise
; improve the policy

(aulse) = {

as before: A™(s,a) =r(s,a) +YE[V™(s")] — V7 (s)

Slide adapted from Sergey Levine



policy iteration algorithm:

Value lteration ~ 1 ol O™ (s. a)

2. set T 7’

f . T : Y- 7 E -~ , T !
/ 1 if a; =@rg max,, Q™ (s, a) Q7(s,a) < 7(s,a) + 7Es np(sjs,a) [V ()]
T (ayfs) = <\ 0 otherwise | .
ar — policy fit a model to

AT (s,a) =r(s,a) + YE[V™(s')] — V7 (s) l -

approximates the new value!

Aﬂ- St. A — n St. A
arg maxa, A™(s¢, a¢) = argmaxa, Q™ (s¢, a) generate samples

(i.e. run the policy)

; improve the policy

value iteration algorithm: V7™(s) « max, Q7 (s, a)
1. set Q(s,a) < r(s,a) + yE[V(s")]
2. set V(s) + max, Q(s,a)

Q™ (s,a) =r(s,a) + yE[V™(s")] (a bit simpler)

skip the policy and compute values directly!

Slide adapted from Sergey Levine
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Advanced policy gradients recap
Actor-critic & case studies
Policy iteration and value iteration

Q learning



Q learning

Q™ (s,a) < r(s,a) + YEgp(s|s,.a) V" (s')]

(

1 if a; = argmax,, Q™ (s, a) fit a model to

/
T A+ S — < . .
( t‘ t) \ 0 otherwise estimate return

value iteration algorithm: generate samples
(i.e. run the policy)
1. set Q(s,a) < r(s,a) +yE|V(s')]

2. set V(s) «+ max, Q(s, a)
improve the policy

V™(s) + max, Q™ (s, a)

fitted (Q iteration algorithm:
@ 1. set y; < r(s;,a;) +YE|Ve(s:)] - approxiate E[V (s))] ~ maxa Q4(s;,a;)

2. set @ < argming % > 1Qe(si,a5) — ¥ H2 doesn’t require simulation of actions!




Value-Based RL: Definitions

Q™ (st,a) = Yy, B, [r(ser,ap)[st, a4]: total reward from taking a; in s "how good is a state-action pair”
V7 (st) = Ea,omy(ay]s,) @7 (¢, a¢)]: total reward from sy "how good is a state”

If you know Q™, you can use it to improve .

7

1 it A — arglnaXxy, AW(St, at)
\ 0 otherwise

W,(at|St) —

For the optimal policy TT™: Q*(st,a:) = Es,  ~p(s,s1]si,a) |T(St,a:) + ymax Q*(s41,a’)

a/

Bellman equation



Value function: V™ (s;) =7

Va‘ue_Based RI_ Q function: Qn(stiat) — 7

Q* function: Q*(s;,a,) = ? Reward = 1 if | can play it

| in @ month, O otherwise
Value* function: V*(s;) =7

IMPROVISATION TEST EXAMPLES AND IDEAS FOR ROCKSCHOOL GRADE 1DRUMS EXAM
J = titten by Theo Lawrence / TL Music Lessons
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Fitted Q-iteration Algorithm

full fitted Q-iteration algorithm: Algorithm hyperparameters
% 1. collect dataset {(s;,a;,s;,r;)} using some policy dataset size N, collection policy
@ 2. set y; < r(si,a;) +vmaxa Qy(s;,a;) iterations K
X
\ - 3. set ¢ <— argming % > Qs (si,a;) — yz-HQ eradient steps S

& Qgy(s;a) Result: get a policy (als) from argmaxQ4 (s, a)
\L parameters ¢ 4

A
e
A Ry

5 i o
L "?‘ﬁh
S

S

ﬁr

i ,.:.__E.
S
LS

We can reuse data from previous policies!
Important notes: an off-policy algorithm using replay buffers

This is not a gradient descent algorithm!

Slide adapted from Sergey Levine



Q-learning

Bellman equation: Q*(s¢,ar) = Es,, ~p(siialsiay) |T(St:a) +ymax Q" (si41,a’)

a/

Pros:
+ More sample efficient than on-policy methods

+ Can incorporate off-policy data (including a fully offline setting)
+ Can updates the policy even without seeing the reward

+ Relatively easy to parallelize

Cons:
- Lots of “tricks” to make it work

- Potentially could be harder to learn than just a policy




Recap

Key learning goals:
e Understand the difference between

* [ntuition of O learning

Q learning:
* [terate either over the policy or the value  * A different way to improve policy
function * No explicit policy necessary

* Value iteration -> Q-learning * Off-policy method



Next

How to implement Q learning in practice?

Can we improve it even more?

More case studies
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